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Algorithm 1 Soft Actor-Critic (SAC)

1: Initialize parameter vectors 1, 61, 05, @
2: for each iteration do
3: for each environment step do

4: at ~~ 7r¢(a,t | St)
ot St41 ~ D(Se41 | Sty a4)
6: D<—DU{(st,at,r(st,at),st+1)}
7:  end for
8:  for each gradient step do
9: 0, «— 0; — AQVQiJQ(Hi), for ¢ € {1, 2}
10: G~ ¢ — A V()
11: Qyp, + 7Qy, + (1 —7)Qy,, for 1 € {1,2}
12: end for
13: end for
Figure 1: SAC Algorithm Figure 2: Reward Function Diagram

Conclusions and Learning Future Work

Creation of HITL demonstrations
Domain randomization

Fix computational bottlenecks
Simulated dataset generation
Integration with Co-Training pipeline

Difficulty learning with sparse reward
Critic instability

Computational bottlenecks
Convergence to local minima

Figure 3: DexNex avatar visualized in Drake
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