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Background

Algorithm Type: SAC [2]

Model Framework

Train an autonomous agent to perform dexterous manipulation tasks with the 
DexNex hardware setup.

Goals A. Specifications

Acknowledgements: This work was funded by the National Science 
Foundation Research Experience for Undergraduates Program, and 
supported by the HAND ERC and Northwestern University.

Pipeline Testing

Future WorkConclusions and Learning
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Use Sim-and-Real Co-Training [1] to train a more robust policy that performs well 
on a varied set of real-world manipulation tasks. 

Simulator: Drake [3]
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Figure 1: SAC Algorithm

Shaped Reward Function

Figure 3: DexNex avatar visualized in Drake

• Creation of HITL demonstrations
• Domain randomization
• Fix computational bottlenecks
• Simulated dataset generation
• Integration with Co-Training pipeline

Figure 2: Reward Function Diagram

Sparse Reward Function

• Difficulty learning with sparse reward
• Critic instability
• Computational bottlenecks
• Convergence to local minima
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